首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8011篇
  免费   1199篇
  国内免费   5433篇
  2024年   14篇
  2023年   349篇
  2022年   405篇
  2021年   462篇
  2020年   586篇
  2019年   687篇
  2018年   646篇
  2017年   643篇
  2016年   594篇
  2015年   591篇
  2014年   576篇
  2013年   708篇
  2012年   594篇
  2011年   540篇
  2010年   471篇
  2009年   622篇
  2008年   543篇
  2007年   617篇
  2006年   521篇
  2005年   483篇
  2004年   435篇
  2003年   429篇
  2002年   334篇
  2001年   303篇
  2000年   281篇
  1999年   284篇
  1998年   214篇
  1997年   202篇
  1996年   207篇
  1995年   188篇
  1994年   171篇
  1993年   126篇
  1992年   115篇
  1991年   102篇
  1990年   105篇
  1989年   102篇
  1988年   74篇
  1987年   56篇
  1986年   48篇
  1985年   33篇
  1984年   34篇
  1983年   10篇
  1982年   47篇
  1981年   20篇
  1980年   23篇
  1979年   19篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
102.
103.
104.
Process‐based model analyses are often used to estimate changes in soil organic carbon (SOC), particularly at regional to continental scales. However, uncertainties are rarely evaluated, and so it is difficult to determine how much confidence can be placed in the results. Our objective was to quantify uncertainties across multiple scales in a process‐based model analysis, and provide 95% confidence intervals for the estimates. Specifically, we used the Century ecosystem model to estimate changes in SOC stocks for US croplands during the 1990s, addressing uncertainties in model inputs, structure and scaling of results from point locations to regions and the entire country. Overall, SOC stocks increased in US croplands by 14.6 Tg C yr?1 from 1990 to 1995 and 17.5 Tg C yr?1 during 1995 to 2000, and uncertainties were ±22% and ±16% for the two time periods, respectively. Uncertainties were inversely related to spatial scale, with median uncertainties at the regional scale estimated at ±118% and ±114% during the early and latter part of 1990s, and even higher at the site scale with estimates at ±739% and ±674% for the time periods, respectively. This relationship appeared to be driven by the amount of the SOC stock change; changes in stocks that exceeded 200 Gg C yr?1 represented a threshold where uncertainties were always lower than ±100%. Consequently, the amount of uncertainty in estimates derived from process‐based models will partly depend on the level of SOC accumulation or loss. In general, the majority of uncertainty was associated with model structure in this application, and so attaining higher levels of precision in the estimates will largely depend on improving the model algorithms and parameterization, as well as increasing the number of measurement sites used to evaluate the structural uncertainty.  相似文献   
105.
This study was conducted to investigate the influence of soil water potential, depth of N placement, timing, and cultivar on uptake of a small dose of labeled N applied after anthesis by wheat (Triticum aestivum L.) Understanding postanthesis N accumulation should allow better control of grain protein concentration through proper manipulation of inputs. Two hard, red spring-wheat cultivars were planted in early and late fall each yr of a 2-yr field experiment. Less than 1 kg N ha–1 as K 15NO3 was injected into the soil at two depths: shallow (0.05 to 0.08 m) and deep (0.15 to 0.18 m). In both years an irrigation was applied at anthesis, and injections of labeled N were timed 4, 12, and 20 days after anthesis (DAA). Soil water potential was estimated at the time of injection. Mean recovery of 15N in grain and straw was 57% of the 15N applied. Recovery did not differ between the high-protein (Yecora Rojo) and the low-protein (Anza or Yolo) cultivars. Mean recovery from deep placement was 60% versus only 54% from shallow placement (p < 0.01). Delaying the time of injection decreased mean recovery significantly from 58% at 4 DAA to 54% at 20 DAA. This decrease was most pronounced in the shallow placement, where soil drying was most severe. Regressions of recovery on soil water potential of individual cultivar x yr x planting x depth treatments were significant only under the driest conditions. Stepwise regression of 15N recovery on soil water potential and yield parameters using data from all treatments of both years resulted in an equation including soil water potential and N yield, with a multiple correlation coefficient of 0.64. The translocation of 15N to grain was higher (0.89) than the nitrogen harvest index (0.69), and showed a highly significant increase with increase in DAA. This experiment indicates that the N uptake capacity of wheat remains reasonably constant between 4 and 20 DAA unless soil drying is severe.  相似文献   
106.
This study examined the patterns of plant functional trait variation in relation to geomorphology, disturbance and a suite of other environmental factors in the riparian margin of the Upper Hunter River, New South Wales, Australia. Vegetation was surveyed on three geomorphic surfaces (point bar, bench and bank) along a 5.5‐km stretch of the Upper Hunter River. Functional traits relating to plant growth and reproduction were collected for the identified species. anova and principal components analysis were used to compare the trait assemblages of species associated with each geomorphic unit. Pearson's correlation coefficients were used to investigate trait variation with respect to environmental variables. There were clear differences in the plant functional trait assemblages associated with the three geomorphic units. Generally the point bar was associated with species that were herbaceous, with small seed mass, a short stature and a high specific leaf area (SLA). Conversely, the bench was associated with grasses that had unassisted seed dispersal and intermediate seed mass and SLA, while species on the bank had tall stature, large seed mass, a high SLA and a perennial life cycle. Variation along the primary gradient of plant functional trait composition was most strongly related to disturbance frequency and to a lesser extent soil nutrients and the proportion of clay and silt, while variation along the secondary gradient was associated with variation in substrate texture as well as soil nutrients.  相似文献   
107.
108.
Twenty-five study sites were established along a 57-km-long transect in order to estimate the impact of an oil refinery, mainly emitting sulphur dioxide (24000 t yr−1), on forest soil (F/H-horizon) chemistry and microbiology. The study demonstrated the existence of a pollution gradient which was best represented by the logarithm of the concentration of vanadium in the analyzed F/H soil layer. Of the soil microbial characteristics measured, including length of fungal hyphae, soil respiration, microbial biomass C and N, and percentage mass loss of Scots pine (Pinus sylvestris) needle litter, only fungal hyphal length was suppressed by the pollution load. No reduction in basic cations (Ca, Mg, K, and Na) in the F/H-horizon, or enrichment of soluble aluminum in the F/H-horizon of the Scots pine forest could be detected to result from the deposition.  相似文献   
109.
张瀚曰  包维楷  胡斌  胡慧 《生态学报》2023,43(16):6878-6888
植被类型变化强烈影响着土壤碳循环。土壤微生物碳利用效率(CUE)是微生物将从环境中获取的碳分配给自身生长的比例,是土壤碳循环的综合指标。研究植被类型变化对CUE的影响有助于从微生物视角理解该过程中的土壤碳动态,可以为评估植被类型变化对土壤质量及生态系统碳循环的影响提供基础,具有重要的理论及实际价值。通过系统查阅相关文献,综述了植被类型变化导致的CUE变化情况,以及该过程中影响CUE的因子与机制。目前,相关研究主要涉及以林地、草地和农业用地为起点或终点的植被变化类型。天然林(原生林、次生林)变化为人工林、林地变化为草地后CUE普遍下降,随终点植被的发展CUE可能恢复至起点水平。植被成熟度越高,发生转变时CUE变化越剧烈。植被类型变化以农业用地为起点或终点时,CUE变化方向的不确定性及幅度的变异性均增加。植被类型变化导致的CUE变化主要受到植被、土壤、微生物因子及其交互作用的驱动,指示CUE的指标、采样季节和土层也会一定程度上影响CUE的变化。今后相关研究应采用直接的CUE测定方法,拓宽研究气候区及植被变化类型,关注植被变化过程中CUE变化的土层差异及动态监测,深入对植被类型变化导致的生态环境因子变化与CUE的关系及作用机制的研究。  相似文献   
110.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号